
ŞäferTEX: Source Code Esthetics for Automated Typesetting

Frank-Rene Schaefer
Franzstr. 21

50931 Cologne

Germany

fschaef@users.sourceforge.net

http://safertex.sourceforge.net

Abstract

While TEX [4] provides high quality typesetting features, its usability suffers due
to its macro-based command language. Many tools have been developed over
the years simplifying and extending the TEX interface, such as LATEX [5], LATEX3
[6], pdfTEX [2], and NTS [8]. Front-ends such as TEXmacs [10] follow the visual/
graphical approach to facilitate the coding of documents. The system introduced
in this paper, however, is radical in its targetting of optimized code appearance.

The primary goal of ŞäferTEX is to make the typesetting source code as close
as possible to human-readable text, to which we have been accustomed over the
last few centuries. Using indentation, empty lines and a few triggers allows one to
express interruption, scope, listed items, etc. A minimized frame of ‘paradigms’
spans a space of possible typesetting commands. Characters such as ‘ ’ and ‘$’
do not have to be backslashed. Transitions from one type of text to another
are automatically detected, with the effect that environments do not have to be
bracketed explicitly.

The following paper introduces the programming language ŞäferTEX as a
user interface to the TEX typesetting engine. It is shown how the development
of a language with reduced redundancy increases the beauty of code appearance.

1 Introduction

The original role of an author in the document pro-
duction process is to act as an information source.
To optimize the flow of information, the user has
to be freed from tasks such as text layout and doc-
ument design. The user should be able to delegate
the implementation of visual document features and
styles to another entity. With this aim in mind, the
traditional relationship between an author and his
typesetter before the electronic age can be consid-
ered the optimal case. Modern technology has in-
creased the speed and reduced the cost of document
processing. However, the border between informa-

tion specification and document design has blurred
or even vanished.

In typesetting engines with a graphical user in-
terface, an editor often takes full control over page
breaks, font sizes, paragraph indentation, references
and so on. Script-oriented engines such as TEX take
care of most typesetting tasks and provide high qual-
ity document design. However, quite often the task
to produce a document requires detailed insight into
the underlying philosophy.

ŞäferTEX tries to get back to the basics, as de-
picted in Figure 1. Like the traditional writer, a user
shall specify information as redundancy-free as pos-
sible with a minimum of commands that are alien
to him. Layout, features, and styles shall be im-
plemented according to predefined standards with a
minimum of specification by the user.

To the user, the engine provides a simple inter-
face, only requiring plain text, tables and figures.
A second interface allows a human expert to adapt
the engine to local requirements of style and output.
Ideally, the added features in the second interface do
not appear to the user, but are activated from con-
text. Then, the user can concentrate on the core
information he wants to produce, and not be dis-
tracted by secondary problems of formatting.

Document
Design

DocumentUser
Human

Human
Expert

pure
text, tables
and figures

features, style, formatting

Typesetting
Engine

Figure 1: Neo-traditional typesetting.

92 Preprints for the 2004 Annual Meeting

ŞäferTEX: Source Code Esthetics for Automated Typesetting

The abovementioned ideal configuration of en-
gine, user, and expert can hardly be achieved with
present automated text formatting systems. While
relying on TEX as a typesetting engine, ŞäferTEX
tries to progress towards a minimal-redundancy pro-
gramming language that is at the same time intu-
itive to the human writer.

2 The ŞäferTEX Engine

As shown in figure 2, the ŞäferTEX engine is based
on a three-phase compilation, namely: lexical anal-
ysis, parsing and code generation. Along with the
usual advantages of such modularization, this struc-
ture allows us to describe the engine in a very formal
manner. In this early phase of the project, it fur-
ther facilitates adding new features to the language.
Using interfacing tools such as SWIG [1] and .NET

[9], it would be possible in the future to pass the
generated parse tree to different programming lan-
guages. Such an approach would open a whole new
world to typesetters and document designers. Plug-
ins for ŞäferTEX could then be designed in the per-
son‘s favorite programming language (C++, Java,
Python, C#, anything). Currently, automated doc-
ument production mainly happens by preprocessing
LATEX code. Using a parse tree, however, gives ac-
cess to document contents in a structured manner,
i.e., through dedicated data structures such as ob-
jects of type section, item group, and so on.

This is some example text

\author Frank R. Schaefer
 Franzstr. 21
 50931 Cologne, Germany

() Abstract abstract.st

(*) Introduction intro.st
(**) Sense and Nonsense of Examples nonsense.st
(**) Explanations w/o examples explanation.st

(*) Examples in Daily Practis daily.st

(*) bla bla bla blah.st

document

code files

token stream

parse tree

code
generator

lexical
analysis

parsing

Typesetting
Engine Core

LATEX

ŞäferTEX

Figure 2: The ŞäferTEX compilation process.

GNU flex [7] (a free software package), is used
to create the lexical analyzer. It was, though, nec-
essary to deviate from the traditional idea of a
lexical analyzer as a pure finite state automaton.
A wrapper around flex implements inheritance be-
tween modes (start conditions). Additionally, the
lexical analyzer produces implicit tokens and deals
with indentation as a scope delimiter.

The parser is developed using the Lemon parser
generator [3] (also free software). Using such a pro-
gram, the ŞäferTEX language can be described with
a context-free grammar. The result of the parser is

a parse tree, which is currently processed in C++.
The final product is a LATEX file that is currently
fed into the LATEX engine. A detailed discussion of
the engine is not the intention of this paper, though.
The present text focuses on the language itself.

3 Means for Beauty

ŞäferTEX tries to optimize code appearance. The
author identifies three basic means by which this
can be achieved:

1. The first means is intuitive treatment of charac-
ters. For example, ‘$’ and ‘ ’ are used as normal
characters and do not function as commands, as
they do in LATEX.

2. The second is to use indentation as the scope
delimiter. This is reminiscent of the Python
programming language. It allows the user to
reduce brackets and enforces proper placement
of scopes. For table environments, this princi-
ple is extended so that the column positions can
be used as cell delimiters.

3. The third principle is automatic environment
detection. If an item appears, then the ‘itemize’
environment is automatically assumed. This
reduces redundancy, and makes the source file
much more readable.

Applying these principles leads to the eight rules
of ŞäferTEX as they are explained at the end (sec-
tion 5). We now discuss them in more detail.

3.1 Intuitive Treatment of Characters

In the design of a typesetting language, the user has
to be given the ability to enter both normal text and
commands specifying document structure and non-
text content. This can be achieved by defining func-
tions, i.e., using character sequences as triggers for a
specific functionality. This happens when we define,
say, sin(x) as a function computing the sine of x.
For a typesetter this is not a viable option, since the
character chain can be easily confused with normal
text. As a result, one would have to ‘bracket’ normal
text or ‘backslash’ functions. Another solution is to
use extra characters. This was the method Donald
Knuth chose when he designed TEX [4]. The first
solution is still intuitive to most users. The second,
however, is rather confusing, implying that ‘%’, ‘$’
and ‘ ’ have a meaning different from what one sees
in the file.

Historically, at the time TEX was designed, key-
boards had a very restricted number of characters.
Moreover, ASCII being the standard text encoding
in Knuth’s cultural context, the high cost of data

Preprints for the 2004 Annual Meeting 93

Frank-Rene Schaefer

Table 1: Comparison of treatment of special
characters in LATEX and ŞäferTEX.

LATEX: According to Balmun \& Refish

$<$www.b-and-r.org$>$ a

conversion of module \#5,
namely ‘propulsion\ control,’

into a metric system increases

code safety up to 98.7\% at

cost of \~ \ \$17,500.

ŞäferTEX: According to Balmun &

Refish <www.b-and-r.org> a

conversion of module #5, namely

‘propulsion control,’ into a

metric system increases code

safety up to 98.7% at cost of ~

$17,500.

storage, and the lack of advanced programming lan-
guages also all may have contributed to the design
choices made. Although the documents produced
still equal and even outclass most commercial sys-
tems of our days, the input language, it must be
admitted, is rather cryptic.

The first step towards readability of code is to
declare a maximum number of characters as ‘nor-
mal’. In ŞäferTEX, the only character that is not
considered normal is the backslash. All other char-
acters, such as ‘%’, ‘$’ and ‘ ’, appear in the text
as they are. Special characters only act abnormal
if they appear twice without whitespace in between.
These tokens fall into the category of alien things,
meaning that they look strange and thus are ex-
pected to not appear verbatim in the output.

Table 1 compares LATEX code to ŞäferTEX code,
showing the improvement with respect to code ap-
pearance. The advantages may seem minor. Con-
sider, however, the task of learning the difference
between the characters that can be typed normally
and others that have to be backslashed or bracketed.
The abovementioned simplification already removes
the chance of subtle errors appearing when LATEX
code is compiled. The subsequent sections show how
the code appearance and the ease of text input can
be further improved.

3.2 Scope by Indentation

In the preceding, we discussed how commands are
best defined in a typesetting engine. One way to
organize information is to create specific regions,
called scopes or environments. Most programming
languages use explicit delimiters for scopes with-
out giving any special meaning to white space of

Einstein clearly stated his disbelief in the

boundedness of the human spirit as becomes

clear through his sayings:

\quote The difference between genius and

stupidity is that genius has its limits.

Only two things are infinite, the

universe and human stupidity, and I’m

not sure about the former.

Similar reports have been heard from Frank

Zappa and others.

Figure 3: Scope by indentation.

any kind. This implies that the delimiters must
be visible. C++, for example, uses curly braces,
while LATEX uses \begin{...} ... \end{...} con-
structs to determine scope. This approach allows
one to place the scopes very flexibly. However, it
pollutes the text with symbols not directly related
to the information being described. The more scopes
that are used, and the deeper they are nested, the
more the source text loses readability.

Another approach is scoping by indentation. A
scope of a certain indentation envelopes all subse-
quent lines and scopes as long as they have more
indentation. Figure 3 shows an example of scope
by indentation. LATEX‘s redundancy-rich delimiters
add nothing but visual noise to the reader of the
file. ŞäferTEX, however, uses a single backslashed
command \quote in order to open a quote domain.
The scope of the quote is then simply closed by the
lesser indentation of the subsequent sentence.

This simple example was chosen to display the
principle. It is easy to imagine that for more deeply
nested scopes (e.g., picture in minipage in center

in figure), LATEX code converges to unreadability,
while ŞäferTEX code still allows one to get a quick
overview about the document structure. Scope by
indentation has proven to be a very convenient and
elegant tool.

An extension of this concept is using columns

as cell delimiters in a table scope. The implementa-
tion of tables in ŞäferTEX allows the source to omit
many ‘parboxes’ and explicit ‘&’-cell delimiters. To
begin with, a row is delimited by an empty line.
This means that line contents are glued together as
long as only one line break separates them. The
cell content, though, is collected using the position
of the cell markers ‘&&’ and ‘||’. Additionally, the
symbol ‘~~’ glues two cells together. This makes
cumbersome declarations with \multicolumn and

94 Preprints for the 2004 Annual Meeting

ŞäferTEX: Source Code Esthetics for Automated Typesetting

\table Food suppliers, prices and amounts.

Product || Price/kg && Supplier && kg || Total Price

==

Sugar || $0.25 && Jackie O‘Neil && 34 || $8.50

__

Yellow Swiss || $12.2 && United Independent && 100 || $1220.00

Cheese Farmers of

Switzerland

__

Green Pepper || $25.0 && Anonymous && 2 || $50.00

Genuine Indians Tribes

Mexican

==

Sum ~~ ~~ ~~ && $1278.50

__

Figure 4: Example of writing a table: identifying cell borders by column.

\parbox unnecessary. Figure 4 shows an example
of a ŞäferTEX table definition.

4 Implicit Environment Detection

A basic means of improving convenience of program-
ming is reducing redundancy. In LATEX, for example,
the environment declarations are sometimes unnec-
essary. To declare a list of items, one has to specify
something like

\begin{itemize}

\item This is the first item and

\item this one is the second.

\end{itemize}

Considering the information content, the occur-
rence of the \item should be enough to know that
an itemize environment has started. Using our sec-
ond paradigm, ‘scope by indentation’, the closing of
the environment could be detected by the first text
block that has less indentation than the item itself.
The \begin and \end statements are therefore re-
dundant. In ŞäferTEX, the token ‘--’ (two dashes)
is used to mark an item. Thus, in ŞäferTEX, the
item list above simply looks like:

-- This is the first item and

-- this one is the second.

As implied previously, this paradigm’s power
really unfolds in combination with scope by inden-
tation. Subsequent paragraphs simply need to be
indented more than the text block to which they
belong. Nested item groups are specified by higher
levels of indentation, as seen in figure 5.

Some important points from the example:

• The appearance of a ‘--’ at the beginning of
a line tells ŞäferTEX that there is an item and

Items provide a good means to

-- structure information

-- emphasize important points. There are

three basic ways to do this:

[[Numbers]]: Enumerations are good when

there is a sequential order

in the information being

presented.

[[Descriptions]]: Descriptions are

suitable if keywords

or key phrases are

placeholders for more

specific information.

[[Bullets]]: Normal items indicate that

the presented set of

information does not

define any priorization.

-- classify basic categories

There may be other things to consider of

which the author is currently unaware.

Figure 5: Example code showing ‘scope by
indentation’.

that an implicit token ‘list begin’ has to be cre-
ated before the token ‘item start’ is sent. The
next ‘--’ signals the start of the next item.

• The ‘[[’-symbol appears at the beginning of the
line. It indicates a descriptor item. Since it has
a higher indentation than the ‘--’ items, it is

Preprints for the 2004 Annual Meeting 95

Frank-Rene Schaefer

identified as a nested list. Therefore, an implicit
token ‘list begin’ has to be created again.

• The final sentence having less indentation than
anything before closes all lists, i.e., it produces
implicit ‘list end’ tokens for all lists that are to
be closed. Thus, the parser and code genera-
tor are able to produce environment commands
corresponding to the given scopes.

The above has discussed the fundamental ideas
to improve programming convenience for a typeset-
ting system. We now turn to defining a best set of
rules for expressions that implements these rules.

5 The Eight Rules of ŞäferTEX

Rules for command design shall be consistent with
the paradigms of intuitive treatment of characters,
scope by indentation, and automatic environment
detection. The following set of rules was designed
to meet these goals for ŞäferTEX while striving for
a intuitive code appearance:

[1] Every character and every symbol in the code
appears in the final output as in the source doc-
ument, except for Alien things.

[2] Alien things look alien.

In plain TEX, characters such as ‘$’, ‘%’ and
‘ ’ do not appear in the document as typed. The
fact that they look natural but trigger some TEX
specific behavior is prone to confuse the layman. In
ŞäferTEX, they appear as typed on the screen. Alien
things can be identified by their look. The next four
rules define the ‘alien look:’

[3] Any word starting with a single backslash \.
Examples are \figure and \table.

[4] Any non-letter character that appears twice or
more, such as ‘##’ (this triggers the start of an
enumeration item at the beginning of the line).

[5] Parentheses (at the beginning of a line) that
only contain asterisks ‘*’ or whitespace. Se-
quences such as ‘(*)’, ‘()’, ‘(***)’ indicate
sections and subsections.

[6] The very first paragraph of the file. It is inter-
preted as the title of the document.

Except for the first case, alien things do not in-
terfere with readability. In fact, the double minus
‘--’ for items and the ‘(*)’ for sections are used nat-
urally in many ASCII files. Internally, alien things
are translated into commands for the typesetting en-
gine, but the user does not need to know.

The last two issues are separation of the text
stream and identification of scope of an environ-
ment:

[7] Termination of paragraphs, interruptions of the
text flow, etc., are indicated by an empty line.

[8] The scope of an environment, table cells, etc.
is determined by its indentation. A line with
less indentation closes all scopes of higher in-
dentation.

These are the eight rules of ŞäferTEX which en-
able one to operate the typesetter. They are defined
as ‘rules’ but, in fact, they do not go much beyond
common organization of text files.

6 Commands

This section gives a brief overview of the commands
that are currently implemented. In this early stage
of development, the system’s structure and language
design has been in the foreground, in order to build
the framework for a more powerful typesetting en-
gine. In the current version of ŞäferTEX, the follow-
ing commands are implemented:

--, ++ starts a bullet item. The two can be used
interchangeably to distinguish different levels of
nested item groups.

starts an enumeration item.

[[]] bracket the beginning of a description item.

\table opens a table environment. It is followed
by a caption and the table body as described in
section 3.2.

\figure opens a figure environment. The text fol-
lowing this command is interpreted as the cap-
tion. Then file names of images are to be listed.
Images that are to be shown side by side are
separated by ‘&&’. Vertically adjacent images
are separated by empty lines.

\quote opens a quote environment.

(*) starts a section. The number of asterisks indi-
cates the level of the section.

() starts a section without a section number. The
number of blanks indicates the section level.

.... includes a file (more than four dots is equiv-
alent to four). The next non-whitespace char-
acter sequence is taken as the filename to be
included.

\author specifies information about the author of
the document.

Commands have been designed for footnotes,
labels, and more. However, due to the early stage of
development, no definite decision about their format
has been made. In the appendix, two example files
are listed in order to provide an example of ŞäferTEX
code in practical applications.

96 Preprints for the 2004 Annual Meeting

ŞäferTEX: Source Code Esthetics for Automated Typesetting

7 Conclusion and Outlook

Using simple paradigms for improving code appear-
ance and reducing redundancy, a language has been
developed that allows more user-friendly input than
is currently possible with TEX and LATEX. These
paradigms are: the intuitive processing of special
characters, the usage of indentation for scope and
the implicit identification of environments. As an
implementation of these paradigms, the eight rules
of ŞäferTEX were formed, which describe the funda-
mental structure of the language.

While developing ŞäferTEX, the author quickly
realized that the ability to provide the parse tree
to layout designers extends the usage beyond the
domain of TEX. Currently, much effort remains to
provide appropriate commands for document pro-
duction. Functionality of popular tools such as ps-

frag, fancyheaders, bibtex, makeindex, etc., are to be
implemented as part of the language. In the long
run, however, it may be interesting to extend its
usage towards a general markup language.

8 Acknowledgments

The author would like to thank the TEX Stammtisch
of Cologne in Germany for their valuable comments.
Special thanks to Holger Jakobs who helped trans-
late this text from Genglish to English.

References

[1] D. M. Beazley. Automated scientific software
scripting with SWIG. In Tools for program de-

velopment and analysis, volume 19, pages 599–
609. Elsevier Science Publishers B. V., Amster-
dam, The Netherlands, 2003.

[2] T. T. Hàn, S. Rahtz, and H. Hagen. The
pdftex manual. http://www.ntg.nl/doc/han/
pdftex-a.pdf, 1999.

[3] R. D. Hipp. The Lemon Parser Generator.
http://www.hwaci.com/sw/lemon, 1998.

[4] D. E. Knuth. The TEXbook. Addison Wesley,
1983.

[5] H. Kopka and P. Daly. A Guide to LATEX. Ad-
dison Wesley, 1992.

[6] Frank Mittelbach and Chris Rowley. The
LATEX3 Project. TUGboat, 18(3):195–198, 1997.

[7] J. Poskanzer and V. Paxson. Flex, a fast lexi-
cal analyzer generator. http://sourceforge.

net/projects/lex, 1995.

[8] P. Taylor, J. Zlatuška, and K. Skoupy. The

NTS project: from conception to implementa-

tion. Cahiers GUTenberg, May 2000.

[9] A. Troelsen. C# and the .NET Platform.
APress, 2001.

[10] Joris van der Hoeven. GNU TEXmacs.
http://www.texmacs.org/tmweb/home/

welcome.en.html, 2003.

Preprints for the 2004 Annual Meeting 97

Frank-Rene Schaefer

Details about

The Elves and The Shoemaker

\Author Original:

Brothers Jakob & Wilhelm Grimm

Somewhere in Germany

() Abstract .. abstract.st

(*) Nocturne shoe productions strange.st

(**) Living in confusion confusion.st

(**) Women make trouble trouble.st

(*) Midnight observations midnight.st

(**) Elves in the cold freezing-elves.st

(*) New era for elves: luxury luxury.st

(*) Elves leave their job undone spoiled-elves.st

Figure 6: Example input ‘main.st’.

\figure ::fig:plots:: Performance a) productivity of shoemaker. b) gain.

ferry-tales/prod.eps && ferry-tales/capital.eps

Reviewing the plots of shoes produced (figure --<fig:plots>), the shoemaker

realized an instantaneous increase during the night period. He only could

think of two possible reasons:

He was sleepworking. Since he even used to work few when awake this

assumption was quickly refuted.

Elves must have come over night and did some charity work.

He further based his theory on the influence of the tanning material used. In

fact, there were differences in the number of shoes produced depending on acid

number and pH value (see table --<tab:tan-mat>).

\table ::tab:tan-mat::Influence of tanning materials on shoe production.

Tanning Mat. && pH value && acid number && shoes prod.

European && 3.4 - 3.7 && 30 - 40 && 32 @@

Indian 2.0 - 2.1 31 - 45 35 @@

African 4.5 - 4.6 33 - 37 36 @@

Australian 3.0 - 7.0 27 - 45 15 @@

Resourcing several leathers from indian & african suppliers allowed him to

increase profit ranges tremendously. Moreover, these shoes were sold at an

even higher price around $0.50. Pretty soon, the shoemaker was able to save a

good sum of $201.24.

Figure 7: Example input ‘confusion.st’.

98 Preprints for the 2004 Annual Meeting

